Analysis of Heat Transfer in Consecutive Variable Cross-Sectional Domains: Applications in Biological Media and Thermal Management

نویسندگان

  • Shadi Mahjoob
  • Kambiz Vafai
چکیده

Temperature prescription and control is important within biological media and in bioheat transport applications such as in hyperthermia cancer treatment in which the unhealthy tissue/organ is subject to an imposed heat flux. Thermal transport investigation and optimization is also important in designing heat management devices and small-scale porous-filled-channels utilized in electronic and biomedical applications. In this work, biological media or the stated heat management devices with a nonuniform geometry are modeled analytically as a combination of convergent, uniform and/or divergent configurations. The biological media is represented as blood saturated porous tissue matrix while incorporating cells and interstices. Two primary models, namely, adiabatic and constant temperature boundary conditions, are employed and the local thermal nonequilibrium and an imposed heat flux are fully accounted for in the presented analytical expressions. Fluid and solid temperature distributions and Nusselt number correlations are derived analytically for variable cross-sectional domain represented by convergent, divergent, and uniform or any combination thereof of these geometries while also incorporating internal heat generation in fluid and/or solid. Our results indicate that the geometrical variations have a substantial impact on the temperature field within the domain and on the surface with an imposed heat flux. It is illustrated that, the temperature distribution within a region of interest can be controlled by a proper design of the multisectional domain as well as proper selection of the porous matrix. These comprehensive analytical solutions are presented for the first time, to the best of the authors’ knowledge in literature. DOI: 10.1115/1.4002303

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Thermal Dispersion Effects for Single and two Phase Analysis of Heat Transfer in Porous Media

The present work involves numerical simulation of a steady, incompressible forcedconvection fluid flow through a matrix of porous media between two parallel plates at constanttemperature. A Darcy model for the momentum equation was employed. The mathematical model forenergy transport was based on single phase equation model which assumes local thermal equilibriumbetween fluid and solid phases. ...

متن کامل

Non-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution

Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...

متن کامل

Nanofluids for Heat Transfer Enhancement – A Review

A nanofluid is a dilute liquid suspension of particles with at least one critical dimension smaller than ~100 nm. Research works so far suggest that nanofluids offer excellent heat transfer enhancement over conventional base fluids. The enhancement depends on several factors such as particle shape, particle size distribution, volume fraction of nanoparticles, temperature, pH, and thermal conduc...

متن کامل

Analysis of Radiation Heat Transfer of a Micropolar Fluid with Variable Properties over a Stretching Sheet in the Presence of Magnetic Field

The present study deals with the analysis of the effects of radiative heat transfer of micropolar fluid flow over a porous and stretching sheet in the presence of magnetic field. The dynamic viscosity and thermal conductivity coefficient have formulated by temperature-dependent relations to obtain more exact results. The flow is supposed two-dimensional, incompressible, steady and laminar and t...

متن کامل

Cooling Performance Analysis of Water-Cooled Heat Sinks with Circular and Rectangular Minichannels Using Finite Volume Method

In this paper, the cooling performance of water-cooled heat sinks for heat dissipation from electronic components is investigated numerically. Computational Fluid Dynamics (CFD) simulations are carried out to study the rectangular and circular cross-sectional shaped heat sinks. The sectional geometry of channels affects the flow and heat transfer characteristics of minichannel heat sinks. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010